Generation of biomaterial particles with controlled dimensions via electrospraying

نویسندگان

  • Xiang Li
  • Gaorong Han
  • Jie Huang
  • Mohan Edirisinghe
  • William Bonfield
چکیده

It is well known that small biomaterial particles can lead to superior properties demanded by advanced applications in tissue engineering. Electrospraying has been considered as a promising approach to prepare fine particles, but reducing the particle size during such jetting process is always challenging. This is because the size of the as-sprayed particles is always limited by the device outlet diameter used. In the study we show that hydroxyapatite (HA) relics of 2 3 μm with low standard deviation can be deposited using a large nozzle (diameter of 1100 μm) only by reducing the nozzle tip angle from 90 ̊ to 15 ̊. The mechanism of such phenomenon was extensively discussed, and a range of refined HA patterns were successfully prepared using the updated electrspraying configuration. We anticipate our findings to have a significant impact on the research of nanostructured biomaterials with superior properties which are realized by reducing the particle size using a greener electrically-driven processing technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controllable porous polymer particles generated by electrospraying.

In this paper, an electrospraying technique was applied to prepare polycaprolactone (PCL) polymer particles with a different microstructure. The PCL particles can be controlled to have a porous microstructure by tailoring the evaporation of solvents during the electrospraying process. The effect of various concentrations on the morphology and microstructure of PCL particles was investigated. Th...

متن کامل

Transformation of cyclodextrin glucanotransferase (CGTase) from aqueous suspension to fine solid particles via electrospraying.

In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying...

متن کامل

Preparation and characterization of polycaprolactone microspheres by electrospraying

The ability to reproducibly produce and effectively collect electrosprayed polymeric microspheres with controlled morphology and size in bulk form is challenging. In this study, microparticles were produced by electrospraying polycaprolactone (PCL) of various molecular weights and solution concentrations in chloroform, and by collecting materials on different substrates. The resultant PCL micro...

متن کامل

Electrohydrodynamic atomization: a versatile process for preparing materials for biomedical applications.

Electrohydrodynamic atomization phenomena have increasingly attracted the attention of researchers who are interested in building micro- or nanometer architectures, such as fibers and encapsulated particles with a controllable microstructure. There are two main electrohydrodynamic atomization techniques: electrospraying and electrospinning. These techniques are unique processes in that they pro...

متن کامل

Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013